Tag Archives: Indian Muslim Scientists

Meet Dr. Mohammad Rameez : Reducing CO2 To Control Global Warming

INDIA / TAIWAN :

Dr. Mohammed Rameez

This is the third part of the series called “Scientist Says” where we bring for our readers the significant research works of young scientists.

Rashida Bakait from India Tomorrow interviews Dr. Mohammed Rameez who is presently working as Academia Sinica postdoctoral research fellow at the Institute of Chemistry, Academia Sinica, Taiwan.

Here are the excerpts of the interview with him.

Q. What is the topic of your research and please give a brief explanation?

Ans: With the increased manufacturing activities, large amount of carbon dioxide (CO2) is being released in the environment, causing Earth–Carbon disparity, leading to global warming issue. Further, there is an additional rising demand of fine chemicals such as p-benzoquinone, which are obtained from the processing of fossil fuels. However, these processes operate under high energy and high pressure conditions generating more CO2. Therefore, decreasing CO2 production and transforming CO2 into valuable solar fuels seem to be an essential issue to be considered for future sustainable development. So, this scenario has given the researchers a challenging topic of as to how to reduce the amount of CO2 and further convert it into useful low-carbon fuels. Hence, my research topic is based on reduction of carbon dioxide to other useful chemicals using electricity and catalysts. This process is known as electroreduction of CO2.

My research is developing an ideal resource-efficient solution based on catalysts i.e. artificial photosynthesis – mimicking how plants use sustainable sources of sunlight, CO2 and water to drive the production of energy-rich carbohydrates. As such, promising research efforts have been intensified in reducing CO2 to similar energy-rich fuels and chemical feedstocks through electro-catalytic routes. Recently, we report a novel g-C3N4/Cu2O-FeOheterogeneous nanocomposite catalyst for COelectrochemical reduction to CO, with a maximum Faradaic efficiency of 84.4% at a low onset overpotential. This research was published in topmost journal in the field of environmental engineering. This research was done in Academia Sinica, a premier research institute of Taiwan. A PhD student Girma from Ethiopia and I worked on it in Prof. Hung’s lab. I was also one of the corresponding authors.

Q. What is the motive/ aim of your research?

Ans: Different semiconducting materials and metals, such as Pt, Pd, TiO2, SrTiO3 CdS, g-C3N4, ZnO, Bi2WO6 and so on have been used as catalyst for COreduction. However, the practical applications of these catalysts for CO2 reduction are still limited by the low CO2 conversion efficiency due to low light harvesting efficiency, high production cost, low catalytic activity, insufficient catalyst durability and a lack of mechanistic understanding.

Hence, our aim was integrating heterostructures containing oxides of non-noble metals, such as iron and copper with g-C3N4 that may result in stable materials that could function as active electrochemical catalysts for CO2 reduction.

Q. What important findings/aspects are highlighted in your research?

Ans: We prepared a novel g-C3N4/Cu2O-FeO heterostructure nanocomposite catalyst by a simple hydrothermal synthetic route and tested it for electrochemical CO2 reduction in aqueous systems. To the best of our knowledge, this is the first experimental report on a hybrid g-C3N4/Cu2O-FeO nanocomposite for electrochemical CO2 reduction. We demonstrated that g-C3N4/Cu2O-FeO is a promising electrocatalysts for COreduction in neutral medium. Incorporating mixed metal oxide into g-C3N4 layers could be a potential strategy to improve the electrocatalytic catalytic activity of the composite materials. With careful experimental design, this research may help us obtain a library of highly efficient water stable and less toxic catalysts optimal for various catalytic applications.

Q. What kind of challenges did you face?

Ans: Many semiconductors, doped and sensitized semiconductors have been used as photocatalysts for CO2 reduction for higher conversion efficiency. The selectivity of products not only depends on the catalysts’ compositions but also on the choice of reductant and the solvent. However, the practical applications of these catalyst for CO2 reduction are still limited by the low CO2 conversion efficiency. It is important to raise the photocatalytic conversion efficiency and long-term stability to make this process economically feasible. Here, our main challenge was to enhance the selectivity and efficiency of the process for the novel g-C3N4/Cu2O-FeO catalyst, which uses earth abundant materials.

Q. Any scholarships or awards for this research?

Ans: We got financial support from Ministry of Science and Technology of Taiwan (109-2113-M-001-020) and Academia Sinica (AS-KPQ-106-DDPP) for this research on CO2 reduction.

I have received Taiwan government’s most prestigious scholarship for PhD ‘TIGP’ and was given an opportunity to study and carry out my research in the Academia Sinica and National Chiao Tung University, a renowned research institution of Taiwan and one of the top three Universities. It was a type of dual degree with my research focused on Sustainable Chemical Science and Technology. After obtaining PhD, I also got Song Pei Wu applied chemistry thesis award for my thesis on Perovskite solar cells. Moreover, two of my research papers also received the best paper award from my university ‘National Chiao Tung University’.

Currently, I have been awarded the most prestigious postdoctoral fellowship in Taiwan (Academia Sinica postdoctoral research fellow) offered by Academia Sinica and I am working as a Postdoctoral research scholar here.

Q. How do you think your research would be beneficial to the society or industry?

Ans. I hope that this research would help in solving the prevalent issue of global warming befalling due to the rapid industrial developments across the globe. Currently, the conversion efficiency is too low to be practically useful in industry, this research would definitely help solving the existing low conversion efficiency.  We are also confident that the proposed hybrid low-dimensional functional materials would help in promoting the conversion of the product yields to some extents and to gain in-depth understanding of the basic principle of CO2 reduction using the advanced spectroscopy/dynamics techniques available in our laboratory. Based on our results we will be able to design better, cheaper and inexpensive catalysts. Finally, we hope these catalysts can be used for a large-scale industrial fixation of carbon dioxide to useful chemicals. This can help us achieve two goals – 1) CO2 amount reduction and 2) valuable chemical productions without using fossil fuel. Ultimately, we will be able to attain the goal of sustainable development.

Q. When did you begin and complete your research?

Ans: I joined the above mentioned project in the month of June 2020, after finishing my PhD, and the first draft of the manuscript was ready by the end of November 2020. The research was finally published in the reputed journal named Applied Catalysis B: Environmental inthe field of environmental engineering in the month of March 2021.

Q. Any new research you are working on now?

Ans: The recent research still requires solutions like finding a viable approach, providing better stability, reducing toxicity and superior catalytic performance. Currently we are working on introducing newer class of materials known as Perovskite. Our goal in this proposal is to develop novel photocatalysts that are inexpensive and efficient. Additionally, the photocatalytic materials should be able to generate large number of electron-hole pairs, while separating charges efficiently at the same time, and providing large amount of active catalytic sites at the interface between the surface of the photocatalyst and the CO2 carriers (either in liquid phase or in gas phase).

Q. What was the conclusion of your research?

Ans. We successfully demonstrated that cheaper catalyst can also work efficiently as expensive catalysts for CO2 reduction with better efficiency and selectivity. More details can be found in our research article.

Q. How do you think your research can be carried forward?

Ans. We expect to establish a standard protocol for employing catalysts for efficient Electro Chemical systems which may ultimately lead to development of the large-scale integrated reactor, including highly efficient buffered system, high conductivity membrane material, and large surface area electrode (e.g. gas diffusion electrode, single-atom membrane, and bio-conductive membrane electrodes). Further, we will be able to tune the selectivity of products by tuning the solvents. Ultimately, research groups around the world will be able to harness CO2 for various applications.

Q. Lastly, please give some tips to the budding scientists?

Ans. My advice to the budding scientists is that they should keep themselves updated with the recent literature and findings. Never lose hope as it takes time to obtain results. Always have plan B and C ready for the research and experiments.

source: http://www.indiatomorrow.net / India Tomorrow / Home> Education> Featured / by Rashida Bakait, India Tomorrow / March 30th, 2021

Meet Khadija Kanwal Khanum Capturing Solar Energy

INDIA :

Khadija Kanwal Khanam

his is the first part of the series called-Scientist Says-where we would be presenting research works of young scientists in various fields.

Khadija Kanwal Khanum has done her PhD and Postdoctoral fellow from Indian Institute of Science (IISc), Bengaluru, India (2010-2018). Presently, she is a postdoctoral fellow at the University of Waterloo, Waterloo, Canada. She shares with Rashida Bakait of India Tomorrow, her significant studies and research on “Solar Cells’’.

Q. What was the topic of your research at IISc and a brief explanation about the same?

Ans. The broad topic of my doctoral and postdoctoral research at Indian Institute of science, Bengaluru, was fabrication, characterization and analyses of organic and hybrid photovoltaics (solar cells) to enhance the solar cell’s device performances. Specifically, the title of my doctoral thesis was “Morphological Architecturing of electroactive materials in organic electronics”. In this research, organic and organic-inorganic (hybrid) semiconductor/electroactive materials are used, instead of inorganic semiconductor materials/silicon to fabricate the solar cells. The organic and hybrid materials compare to the inorganic materials/ silicon counterparts are lab synthesized materials with ability to easily tailor the band gap (as semiconductors), and require less energy during their solar cell fabrication hence cost-effective. However, these organic and hybrid solar cells have till now reported, less power conversion efficiency, PCE (>25%) and are less stable in environment and therefore, require extensive research before their wide commercialization.

 Q. What was the aim behind your research?

Ans. In this research, a different fabrication procedure was used called Electro-spinning, in order to enhance the light absorption as well as increase the charge (electron-hole) separation in the solar device, thereby increasing its PCE.

 Q. What kind of new aspects were highlighted in your research?

Ans. The highlighting parts of the research were 1).The active layer of the solar cell which is generally in a thin film form was modified to fiber and various other forms such as network (Khanum and Ramamurthy, 2016), photonic (Khanum et al., 2017), two and three-dimensional triangles (Khanum and Ramamurthy, 2018) and spike-spheres (Khanum et al., 2015) structures using electrospinning/ electrospraying method. 2). The modified active layers assisted in improving the solar devices’ light absorption by 19 – 31% and PCE by 23 – 68%.

Q. When did you begin and complete your research?

Ans. I joined IISc as a doctoral student, in Aug 2010 and subsequently took few advance and elective courses in polymer science and technology, nanotechnology, vacuum systems, sensors and material characterization for one year, in order to gain knowledge and understanding of the above subjects, which helped me in my research. I started my research sometime around June 2011, submitted my doctoral thesis in July 2015, defended the thesis in July 2016, and continued the research as research associate and postdoctoral fellow till Mar 2018.

 Q. What kind of challenges you faced?

Ans. Since organic electroactive materials used in this research are conjugated small molecules and polymers possessing, low molecular weight than conventional polymers hence, fiber formation using electrospinning was difficult. Therefore, lot of optimization of the electrospinning process parameters and modifications of the organic and hybrid materials used such as; preparation time, concentration and solvent used had to be meticulously carried out, during solar cells fabrication. Additionally, maintaining inert atmosphere both, during fabrication and characterization of solar cells required lot of patience and cautions, making this study iterative and time-consuming. For instance, it took almost two years in this study, to obtain first few successful solar cell devices.

Q. Any scholarships or awards for research?

Ans. For my PhD and postdoctoral research, major part of the funding was received as scholarship from Ministry of Human Resource Development (MHRD) and Institute (IISC) research associate fund while during last 15 months; I received scholarship from my Ph.D and Postdoctoral advisor from his project grant. I received few awards and grants to present the research work in various international conferences; Manish Narayan memorial award from Department of Materials Engineering, IISc in 2014, Indian Institute of Science support and grant in 2014 and 2015, Department of Science and Technology (DST) young scientist in 2016 and International Workshop on Advanced Materials (IWAM), Ras Al Khaimah, UAE travel grant in 2016 and 2018.

Q. How do you think your research would be beneficial to industry/ society?

Ans. Energy from sun that strikes the earth in a year is enormous, precisely equals to 3 x 1024 J, or about 10, 000 times more than current global energy consumption. Covering 0.1% of the earth’s surface with 10% efficiency solar cells would suffice the energy demand of the whole world (Siddiki et al., 2010). Therefore, my research of improving the light absorption and PCE of organic and hybrid solar cells through morphological architecturing would be one of the smart tools that can be used to trap and utilize the renewable and sustainable energy resource (solar energy).

Q. What was the conclusion of your research?

Ans. In conclusion, in this research `Electrospinning Processing Technique’ is evaluated as one of the novel processing techniques for morphology patterning, leading to improvements in structural, optical and opto-electrical properties of organic and hybrid electroactive materials. Further these electroactive materials based on morphological patterning were also evaluated as organic solar cells with 19 – 31% increment in light/ optical absorption and 23 – 68% enhancement in PCE (Khanum and Ramamurthy, 2016; Khanum et al., 2017; Khanum and Ramamurthy, 2018).

 Q. How do you think your research can be carried forward?

Ans. The research could be extended in studying the life stability and field performance of these solar cells. The research could also be extended by using electrospinning processing technique to generate more morphological structures than studied in this research (mentioned in Q3’s reply) and evaluate their properties in the field of photovoltaics/solar devices. The already generated morphological structures such as network, photonic, two and three-dimensional triangles and spike-spheres structures are made up of organic electroactive materials and can be explored in the field of sensors and medical applications as in drug delivery and as tissue scaffolds, therefore the feasibility in these areas could also be one of the future direction.

Q. Can you brief us about your current research?

Ans. Yes, my research at University of Waterloo, Canada is on nanocomposites materials employed in power industry. As the World’s energy demand seems to be all time high and increasing, the focus of research is now more on renewable and sustainable energy. The power industry needless to mention, acts as a bridge between all types of energy generation and the consumers. In my present work, the importance of nanocomposites materials and its processing with respect to power industry are researched. Nanocomposites are remarkable class of materials, consisting of various types of nanofillers which act as reinforcement in the matrix and thus enhance the desired properties. These nanomaterials have to be dispersed homogeneously in the matrix to gain optimized effects and therefore require special processing tools. Therefore, in this research, processing of various polymer nanocomposites of silicone filled with Silica and Alumina fillers are studied.

Q. Apart from your main research topic, would you like to list any other work you collaborated and worked on?

Ans. Yes, besides fabrication, characterization and analyses of organic and hybrid solar cells, I collaborated and worked on few other interesting topics such as– Developed silk and melanin nanofibers mats for the bio-application such as scaffolds for tissue engineering, evaluated the effectiveness of non-water based cleaning mechanisms for photovoltaic (PV) systems. Studied the influence of dust density and composition on performance of PV systems using Infrared (IR) radiation and assessed magnetic materials and their integration in fibre reinforced polymer composites for structural applications.

source: http://www.indiatomorrow.net / India Tomorrow / Home> Education / by Rashida Bakhait, India Tomorrow / March 17th, 2021

Dr. Imtiyaz Ahmad Bhat: Developing Water Soluble Co-Ordination Cages For Applications In Catalysis And Drug Delivery

INDIA / Thuwal, SAUDI ARABIA :

Dr Imtiyaz Ahmad Bhat.

This is the sixth part of the series – `Scientist Says’ –  where we bring for our readers the significant and commendable research works of young scientists in various fields.

Dr. Imtiyaz Ahmad Bhat started working as a researcher in the year 2013 with Prof. P.S Mukherjee lab, Inorganic and Physical Chemistry department, IISc Bangalore. He completed his Ph.D in 2018 and worked as a Research Associate in the same department. Currently, Dr. Imtiyaz is working as a post-doctoral fellow in King Abdullah University of Science and Technology (KAUST), Saudi Arabia. He shares his significant research works with Rashida Bakait of India Tomorrow. Here are the excerpts of the interview.

 Q. To begin with, please explain in brief to our readers about `Supramolecular Chemistry’ and the research works associated with the subject.

Ans. Nature has inspired  scientists to exploit the potency of weak non-covalent interactions to form complex functional Supramolecules, with wide range of applications, which led to the birth of a new field of chemistry called ‘Supramolecular chemistry’ i.e. chemistry ‘beyond molecule’. Supramolecules are large complex molecules formed upon aggregation of smaller constituent building blocks through non-covalent interactions by a process called ‘self-assembly’. ‘Self-assembly’ is a spontaneous process where components, either separated or linked, reversibly form complex ordered aggregates without any external direction. Supramolecular chemistry has emerged as a broad field and has given rise to vast number of diverse structures by using a variety of non-covalent intermolecular interactions.

 Over the past two decades, various methodologies of co-ordination driven self-assembly for the rational design of polygons and 3D supramolecular including tetrahedra, cubes, octahedra, cuboctahedra, and others have been developed. Enzymes, which are nature’s molecular containers, possess molecular pockets capable of binding substrates through non-covalent interactions and catalyze many important enzymatic reactions. Over the last two decades, with the advent of co-ordination driven self-assembly, the focus has greatly shifted to exploiting weak metal–ligand coordination for the self-assembly of molecular containers from individual components. The simple yet dynamic nature of coordination driven self-assembly has led to the construction of various capsules and cages with nanometre-size cavities capable of various applications.  The shape and size of inner cavity of the coordination cages, even those not possessing definite covalent interactions between the catalyst and substrate, play a paramount role in altering the reactivity and properties of the contained molecules.

The central theme of my doctoral research interest in IISc has been in the area of co-ordination driven supramolecular chemistry, arguably one of the hottest areas of chemical sciences. In my research work at IISc Bangalore, I was specifically engaged in developing novel coordination cages possessing confined cavity and demonstrate their applications in cavity directed catalysis and stimuli-responsive targeted drug delivery.

Besides thismy current research focus at King Abdullah University of Science and technology, Saudi Arabia as Post-doctoral fellow is to design and synthesize the Imine-based macrocycle which will act as Non Adaptive Crystal Systems (NACs) and will eventually be used for separation of hydrocarbon and their derivatives. These Imine based macrocycles offer plenty of merits, such as easy preparation, low cost, high recyclability, chemical resistance, and thermal stability and hence makes them ideal material for industrial application.

Q. What was the objective of your research?

 Ans. The supramolecular coordination complexes are obtained by mixing soluble metals as acceptors and ligand precursors as donors which spontaneously form metal-ligand bonds to generate a single thermodynamically-favoured product. Over the past two decades, various methodologies of coordination driven self-assembly for the rational design of polygons and 3D supramolecules including tetrahedra, cubes, octahedra, cuboctahedra, and others have been developed. My aim was to examine the self-assembly of pyridine and pyrimidine based ligands with square planar Pd(II) and Pt(II) metal ions to get the water soluble supramolecular structures with intrinsic hydrophobic cavity. These supramolecules with intrinsic hydrophobic cavity have a potential to function like the naturally found catalysts i.e enzymes by mimicking the cavity driven enzymatic reactions.

Q. When did you begin and complete your research?

Ans. I started in 2013 as a PhD student in Prof. P. S. Mukherjee lab at IISc Bangalore. Currently. I am working as a post-doctoral fellow in King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

Q. What were the new findings of your research?

Ans. I could successfully synthesize and characterize various water soluble supramolecular structures with different shapes like sphere in sphere, tubes, tetrahedron, molecular barrels etc. and sizes. The tetrahedral cage with confined space was used as supramolecular catalyst to promote the Michael Addition Reaction of Indole and various nitro-styrene derivatives in water. The hydrophobic cavity of water soluble barrel like structures was successfully utilized to encapsulate curcumin and increased its solubility, enhanced its stability against UV light and thus acted as a safe aqueous carrier of curcumin to HeLa cancer cells. Also, an unusual supramolecule with triangular orthobicupola geometry was obtained, which is the first example of its type reported so far. The confined pocket of this cage with unique structural topology has been successfully used for the catalytic intramolecular cycloaddition reaction of substrates containing less reactive alkyne dienophile.   

Q. What was the conclusion of your research?

Ans. In conclusion, we could successfully synthesize and characterize a giant double layered spherical structure with 24 Pd (Palladium) ions and 24 Pyrimidine based ligands.  The strategy used here for the synthesis of double-shell superstructure establishes new guidelines for the creation of novel complex architectures. To further explore Pyrimidine as donors, various ligands with Pyrimidine as donors were synthesized and their self-assembly with cis-blocked Pt acceptor has led to formation of tube and tetrahedral cage structures. The tetrahedral cage with confined space was used as supramolecular catalyst to promote the Michael addition reaction of indole and various nitro-styrene derivatives. We were able to synthesize and characterize a water soluble barrel and cylindrical assemblies.The hydrophobic cavity of water soluble barrel was successfully utilized to encapsulate curcumin and increased its solubility, enhanced its stability against UV light and thus acted as a safe aqueous carrier of curcumin to HeLa cancer cells. The cylindrical assembly obtained was found to adopt an unusual triangular Orthobicupola geometry, which is the first example of its type reported so far. The confined pocket of this cage with unique structural topology has been successfully used for the catalytic intramolecular cycloaddition reaction of substrates containing less reactive alkyne dienophile.

Q. What kind of challenges did you face?

Ans.  Challenges and difficulties are the inherent part of the research and researchers have to find ways to overcome them and materialize their tasks. It was really a herculean task in characterizing these supramolecular structures. However, patience and positive attitude helped me to keep trying and I could finally characterize them well and obtained their crystal structures. As a beginner, I struggled with writing my results and presenting them in scientific journals.

Q. Any scholarships or awards for research?

Ans. My Research Associateship was extended for one more year in IISc for completing research within five years. In 2019 I received Irish research post-doctoral fellowship in Trinity College, Dublin

Q. How do you think your research would be beneficial to the society or industry?

Ans. The 3D metallo-supramolecular architectures with confined cavity have been exploited for many applications such as- guest encapsulation, catalysis and drug delivery etc. we were able to show that organic chemical reactions can be performed in water using these water soluble supramolecular structures. Barrel shaped molecules are highly promising which possess large open windows along with large confined cavity. Our approach provides one of the elegant and efficient methods to design such barrel shaped architectures and their use to perform the catalytic organic transformation in aqueous medium. A lot of effort is going on in the scientific field to design new such systems and utilize them for various applications. The importance of this field could be easily reflected from the 2016 Nobel Prize which was awarded for novel findings in supramolecular chemistry.

Q. How do you think your research can be carried forward?

Ans. The features of coordination driven self-assembly like high directionality, intermediate bond enthalpy and vast diversity of organic ligands make it unique over the other non-covalent self-assembly approaches. The coordination-driven self-assembly was initiated by Lehn and Sauvage and pioneered the field with the introduction of various architectures ranging from ladders, helicases, rings, knots, rotaxanes, catenanes, and several other architectures. Later on, other scientists have taken the field to newer heights by developing novel methodologies and approaches to design and synthesize various discrete metal-organic architectures of distinct shapes, sizes and functionalities. The breadth of coordination driven self-assembly has continuously increased with the introduction of numerous functional supramolecules each year and it keeps on growing with every passing day.

Q. Any new research you are working on now?

Ans. My current research focus at King Abdullah university of Science and technology, Saudi Arabia as Post-doctoral fellow is to design and synthesize the Imine based macrocycle which will act as Non Adaptive Crystal Systems (NACs) and will eventually be used for separation of hydrocarbon and their derivatives. These Imine based macrocycles offer plenty of merits, such as easy preparation, low cost, high recyclability, chemical resistance, and thermal stability and hence makes them ideal material for industrial application.

Q. Give few suggestions to budding scientists.

Ans. For those who have decided to take research as their career, I would like to suggest them that patience is the key and keep learning from the mistakes as this is how it works in research. As a researcher, update yourself with the current literature related to your field that will help you to give new directions to your ongoing projects. Time management is crucial. Plan your experiments in advance so that you are confident about tasks you will be performing. Wishing goodluck to all  budding scientists.

source: http://www.indiatomorrow.net / India Tomorrow / Home> Education> Featured / by Rashida Bakait, India Tomorrow / April 28th, 2021

Dr. Kausar Raza : Finding A New And Safe Method To Treat Cancer

INDIA / California, USA :

Dr. Kausar Raza.

This is the seventh part of the series called `Scientist Says’ where we bring for our readers the significant and commendable research works of young scientists.

Dr. Mohammed Kausar Raza completed his M.Sc. in Inorganic Chemistry from Jamia Millia Islamia, Delhi and began his Ph.D. in the year 2015 with Prof. Akhil Chakravarthy lab, Inorganic and Physical Chemistry Dept., IISc, Bangalore. After completing his Ph.D in the year October 2019, he joined California Institute of Technology (Caltech) in the United States as a postdoctoral research fellow in January 2020. He shares his significant research works with Rashida Bakait of India Tomorrow. Here are the excerpts of the interview.

Q. Please give a brief explanation of your research.

Ans. My research interest mainly focuses on to locate the lesions with the help of [4Fe4S] cluster and their treatment using Pt-based anticancer agents. The research area is divided into two parts: (i) Investigating the chemical role of [4fe4S] cluster in eukaryotic proteins through electrochemical and biochemical studies. (ii) Use of Pt-based complexes for chemo phototherapeutic treatment of cancer.

Cancer is considered as one the deadliest diseases which has been outspreaded in various parts of the human body. Various methodologies have been implemented till date to fight against the proliferation of cancerous cells, namely, Chemotherapy (mainly Pt-based anticancer drugs), Photodynamic Therapy (which involves photosensitizer, light, molecular oxygen), etc. To fill the pitfalls of the conventional chemotherapeutic and photodynamic therapeutic drugs including the NER machinery and less tissue penetration respectively, during my PhD research at Indian Institute of Science, Bangalore, I combined these two well known modalities, i.e.; chemotherapy and photodynamic therapy (PDT) by tuning the structural properties of Pt-based complexes to kill the cancer cells selectively. The idea was to develop the series of conjugates bearing the structural framework as of the conventional chemotherapeutic anticancer drug, cisplatin and BODIPY dyes for PDT activity. In photodynamic therapy, the growth of cancer cells can be terminated in the presence of light which generates ROS (reactive oxygen species) capable of cleaving the DNA of the tumor cells and in turn causing the cell death. The cell imaging is beneficial to track the anti-cancer drug inside the body. The combination of the Pt metal which encrusted the path for DNA cross-linking and the BODIPY motif attached which aided in cell imaging and killing of cancer cells in the presence of light, comes out as a new scope to design the more efficient photodynamic chemotherapeutic anticancer agents.

Earlier in my PhD, I have made efforts to treat the cancer, now I am exploring my research to detect the lesions through DNA mediated charge transport chemistry. It focuses on assessing the functional role of iron sulfur [4Fe-4S] in eukaryotic DNA replicative and repair proteins. We perform the electrochemical investigation to detect the tumor/disordered sites using DNA mediated electron transfer.

Q. When did you begin and complete your research?

Ans. My research started with my master dissertation work in the year 2014. I started working as a PhD researcher in the January 2015 and successfully submitted my thesis in Oct. 2019. Now, I have been doing research as a postdoctoral fellow in the field of biochemistry since January 2020.

Q. What was the objective of your research?

Ans. Since a variety of anticancer drugs are known to treat numerous kinds of cancers, namely colorectal cancer, breast cancer, oral cancer, and lung cancer etc. My aim was to design and synthesize a drug in such a way which is highly selective towards killing the cancer cells without harming the normal living cells. We intended to approach a dual action mechanism of platinum based anticancer drugs for real time tracking and selective cancer cell death.

Q. What were the findings of your research?

Ans. We prepared a series of mono-functional Pt-based complexes capable of binding with DNA for the treatment against cancer. We have mainly designed the mitochondrial targeting anticancer drugs, as mitochondria is known as the powerhouse of the cell and it lack NER machinery. Major outcome of our studies is in the form of a indigenously synthesized prodrug which have 100-fold better anticancer activity than FDA approved Photofrin drug. Moreover, this drug can be tracked inside the cell which is not the case with any of the FDA approved platinum based anticancer drugs. We have conducted the in-vivo anticancer studies of these drugs in the living mice models using photodynamic chemotherapeutic dual action mechanism and obtained promising results which is turned out to be a patent in this emerging field. This work was done with the collaboration in the department of biological sciences at IISc.

Q. What was the conclusion of your research?

Ans. My work presents a thorough investigation on the Pt-based anticancer drugs derived from cisplatin motif. Appendment of BODIPY moieties as florescent probes aided in cell imaging and production of ROS to kill the cancer cells in presence of light. The in-depth photophysical investigation of our Pt based complexes revealed their properties to absorb visible light and made them suitable for real time tracking. This study provides further scope for combinatorial research that includes photodynamic therapy and DNA cross linking ability of the monofunctional Pt (II) drugs (chemotherapy) against cancer. Finally, the in vivo assay results on mice showed significant arrest of tumor growth and its shrinkage in size thus giving new insights in the chemistry of platinum-based PDT agents.

Q. What kind of challenges did you face?

Ans. In my masters, I have pursued a research project in coordination chemistry. I have learned various synthetic procedures to synthesize a variety of transition metal complexes and carried out an in-depth characterization using various spectroscopic techniques. Then I joined a bioinorganic chemistry lab, where the challenge was to design the metal complexes with a sharp focus on its pharmacology (pharmacokinetics) by implementing a cost-effective methodology. Also, the fluorophore motifs incorporated in the structure must have the significant absorption and emission photophysical properties which can aid the drug in penetrating deep inside the body. It was achieved after studying the UV-Vis properties of the drugs. Developing a drug performing a dual action mechanism in treating cancer cells was itself a challenge. Furthermore, I joined a biochemistry lab at Caltech, moving from bioinorganic to biochemistry was another major challenge, where I had to learn the new techniques and methods prior to performing the experiments and analyzing the outcomes.

Q. Any scholarships or awards for research?

Ans. As the recognition of my doctoral work, I received the prestigious Carl Storm International Diversity (CSID) fellowship for Gordon Research Conference (GRC), Metal in Medicine, USA. I am also a recipient of “Government of India International Travel Research Award (DST), CSIR Travel Research Award, ICMR Travel Research Award, SBIC Student Travel Grants for ICBIC-19 in Interlaken, Switzerland. I received fellowship from MHRD and CSIR for the five year during my Ph.D.  

Q. How do you think your research would be beneficial to the society or industry?

Ans. Cancer counts among the second deadliest diseases in the world. Among all types of cancer, about 30% of India’s affected population accounts for oral cancer only. Among the various therapies established for cancer treatment, photodynamic therapy is well known for the treatment of oral cancer. My research on Pt based drugs will provide a new insight and scope to combine the two therapies and kill the tumor with notable potency. Our mice model demonstrated an excellent efficacy of our drug inside the living being. These new findings can lead to investigate the drug-tumor interaction inside the human body. Implementation of our Pt based prodrugs will provide a new way to treat the cancer. Moreover, commercializing these drugs may reduce the cost of treatment. In addition, it’s manufacturing at industrial level will increase the employment for several educated and skilled people in our country.

Q. Any new research you are working on now?

Ans. Currently, I am working on the DNA mediated charge (electron) transfer chemistry. My aim is to investigate the rapid communication among DNA-processing proteins for repairment through DNA-mediated redox signaling. These DNA-processing enzymes bear an iron-sulfur [4Fe4S] cluster which performs common redox switch on binding with DNA and gives rise to DNA-charge transport chemistry. It mainly focuses on the electrochemical investigation of the chemical role of the [4Fe4S] cluster in eukaryotic DNA primase and the polymerase.  Importantly, electrochemistry on the DNA-modified electrodes facilitates reaction under aqueous, physiological conditions with a sensitive electrical measurement of binding and activity.

Q. How do you think your research can be carried forward?

Ans. Organelle targeting is an emerging field and needs thorough investigation to study the action of metallodrug inside the biological systems. Introducing selectivity in structural framework of the drugs towards single organelle targeting can make the drug more potent and viable. Other metals are also prominent on anticancer platform, so it is possible to design and synthesize such cost effective and biocompatible metal ligand frameworks which is capable of performing multiple actions with significant potency. The preliminary in vivo results and pharmacokinetics suggested that a detailed study need to perform so that it can be taken to clinical trial.

Q. Give some suggestions to the budding scientists.

Ans. Academia is a never-ending journey full of exciting adventures. It should be spent with utmost pleasure and satisfaction while enjoying science. One should be able to eminence both the personal affairs and professional business. Be clear and rational. Do not hesitate while expressing and talking about yourself, be it stress or mental health imbalance. Also, create another world outside the lab and explore it. Hone your communication skills. In academia, communication is the key to success Always indulge in a teamwork, moreover, in order to be an interdisciplinary scientist, be open to accept and request for collaboration. Do something different which no one thinks is important and invest your efforts and time in it. Learn broadly. Be bold. Be passionate. Establish a name for yourself. Above all, perhaps, to be successful in academia you need to develop your persistence and preserve your creativity no matter what. The key to unlocking the untapped potential is to create and build a path conducive to novelty in science. Make your research plans wisely and execute them in a disciplined way. Always remember, slow and steady wins the race.

source: http://www.indiatomorrow.net / India Tomorrow / Home> Education / by Rashida Bakait, India Tomorrow / May 01st, 2021